Complete set of representations for dissipative chaotic three-dimensional dynamical systems.
نویسندگان
چکیده
Embeddings are diffeomorphisms between some dynamical phase space and a reconstructed image. Different embeddings may or may not be equivalent under isotopy. We regard embeddings as representations of the dynamical phase space. We determine the topological labels required to distinguish inequivalent representations of three-dimensional dissipative dynamical systems when the embeddings are into R(k), k=3,4,5,…. Three representation labels are required for embeddings into R³, and only one is required in R⁴. In R⁵ there is a single "universal" representation.
منابع مشابه
LI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS
In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$ for finite discrete $X$ with at least two elements, infinite countable set $Gamma$ and arbitrary map $varphi:GammatoGamma$, the following statements are equivalent: - the dynamical system $(X^Gamma,sigma_varphi)$ is Li-Yorke chaotic; - the dynamical system $(X^Gamma,sigma_varphi)$ has an scr...
متن کاملNumerical algorithms for stationary statistical properties of dissipative dynamical systems
It is well-known that physical laws for large chaotic dynamical systems are revealed statistically. The main concern of this manuscript is numerical methods for dissipative chaotic infinite dimensional dynamical systems that are able to capture the stationary statistical properties of the underlying dynamical systems. We first survey results on temporal and spatial approximations that enjoy the...
متن کاملShape of attractors for three-dimensional dissipative dynamical systems
We introduce a method to bound attractors of dissipative dynamical systems in phase and parameter spaces. The method is based on the determination of families of transversal surfaces (surfaces crossed by the flow in only one direction). This technique yields very restrictive geometric bounds in phase space for the attractors. It also gives ranges of parameters of the system for which no chaotic...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملCOUNTEREXAMPLES IN CHAOTIC GENERALIZED SHIFTS
In the following text for arbitrary $X$ with at least two elements, nonempty countable set $Gamma$ we make a comparative study on the collection of generalized shift dynamical systems like $(X^Gamma,sigma_varphi)$ where $varphi:GammatoGamma$ is an arbitrary self-map. We pay attention to sub-systems and combinations of generalized shifts with counterexamples regarding Devaney, exact Dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 82 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2010